

Opto-Electronic Components

Soft X-Ray, Deep UV Enhanced Series

Inversion Layer Silicon Photodiodes

Features

- Direct Detection
- No Bias Needed
- High Quantum Efficiency
- Low Noise
- High Vacuum Compatible
- Cryogenically Compatible
- 0.070nm to 1100nm Wavelength Range

Applications

- Electron Detection
- Medical Instrumentation
- Dosimetry
- Radiation Monitoring
- X-ray Spectroscopy
- Charged Particle Detection

OSI Optoelectronics' 1990 R&D 100 award winning X-UV detector series are a unique class of silicon photodiodes designed for additional sensitivity in the X-Ray region of the electromagnetic spectrum without use of any scintillator crystals or screens. Over a wide range of sensitivity from 200 nm to 0.07 nm

(6 eV to 17,600 eV), one electron-hole pair is created per 3.63eV of incident energy which corresponds to extremely high stable quantum efficiencies predicted by Eph/3.63eV (See graph below). For measurement of radiation energies above 17.6 keV, refer to the "Fully Depleted High Speed and High Energy Radiation Detectors" section.

A reverse bias can be applied to reduce the capacitance and increase speed of response. In the unbiased mode, these detectors can be used for applications requiring low noise and low drift. These detectors are also excellent choices for detecting light wavelengths between 350 to 1100 nm.

The detectors can be coupled to a charge sensitive preamplifier or low-noise op-amp as shown in the circuit on the opposite page.

OEC GmbH Vogelbergstraße 20 D-86441 Zusmarshausen Tel. +49-(0)8291-18 86-0 Fax. +49-(0)8291-18 86-79 info@oec-gmbh.de www.oec-gmbh.de

OEC GmbH Vogelbergstraße 20 D-86441 Zusmarshausen Tel. +49-(0)8291-18 86-0 Fax. +49-(0)8291-18 86-79 info@oec-gmbh.de www.oec-gmbh.de

Opto-Electronic Components

G

TÜΛ

ISO 9001

Typical Electron Num XUV

Typical Electro-Optical Specifications at TA=23°C

Model	Active Area		Capacitance (nF) 0V		Shunt Resistance (MΩ) -10mV		
Number	Area (mm ²)	Dimensions (mm)	Тур	Max	Min	Тур	
`XUV' Series Metal Package							
XUV-005	5	2.57 φ	0.3	0.5	200	2000	
XUV-020	20	5.00 φ	1.2	1.6	50	500	
XUV-035	35	6.78 x 5.59	2	3	30	300	
XUV-100	100	11.33 φ	6	8	10	100	
XUV' Series Ceramic Package							
XUV-50C	50	8.02 φ	2	3	20	200	
XUV-100C	100	10.00 sq	6	8	10	100	

Typical Quantum Efficiency

Model	NEP (V	N/√Hz)	Temp. Range (°C) *		Package	
Number	0V, 2	00nm	Onerating	Storege	Style	
Humbor	Тур	Max	Operating	Storage	etylo	
`XUV' Series	Metal Packa	ge				
XUV-005	2.9 e -15	9.1 e -15		-20 ~ +80	22/ TO-5	
XUV-020	5.8 e -15	1.8 e -14	20 - 160		22/ TO 9	
XUV-035	7.4 e -15	2.3 e -14	-20 ~ +00		23/10-0	
XUV-100	1.3 e -14	4.1 e -14			28/ BNC	
`XUV' Series	Ceramic Pa	ckage				
XUV-50C	9.1 e -15	2.9 e -14	20~+60	-20 ~ +80	25/ Coromic	
XUV-100C	1.3 e -14	4.1 e -14	-20 ** +00			

All XUV devices are supplied with removable windows.

Non-Condensing temperature and Storage Range, Non-Condensing Environment For mechanical drawings please refer to "Mechanical Drawings".

In this circuit example, the pre-amplifier is a FET input op-amp or a commercial charge sensitive preamplifier. They can be followed by one or more amplification stages, if necessary. The counting efficiency is directly proportional to the incident radiation power. The reverse bias voltage must be selected so that the best signal-to-noise ratio is achieved.

For low noise applications, all components should be enclosed in a metal box. Also, the bias supply should be either simple batteries or a very low ripple DC supply.

Amplifier:	OPA-637, OPA-27 or similar
R _F :	10 MΩ to 10 GΩ
R _S :	1 MΩ; Smaller for High Counting Rates
C _F :	1pF
CD:	1pF to 10 uF

OUTPUT VOUT = Q / CF

Where Q is the Charge Created by One Photon or One Particle

OEC GmbH Vogelbergstraße 20 D-86441 Zusmarshausen Tel. +49-(0)8291-18 86-0 Fax. +49-(0)8291-18 86-79 info@oec-gmbh.de www.oec-gmbh.de

Opto-Electronic

ISO 900

Components

Opto-Electronic Components

Reverse Bias:

The XUV devices can be operated with a small reverse bias in applications where fast response time is critical. We do not recommend using a reverse bias higher than 5V. Therefore to improve the response time you can use a reverse bias of up to 5V on the detector.

Impact of Reverse Bias on NEP and Bandwidth:

Applying a reverse Bias will reduce the junction Capacitance of the device resulting in Higher Bandwidth. Also The reverse Bias will increase the dark current of the detector which in turn will increase the NEP.

The exact relation and the calculation of the NEP and Capacitance are explained in the attached application notes.

OEC GmbH Vogelbergstraße 20 D-86441 Zusmarshausen Tel. +49-(0)8291-18 86-0 Fax. +49-(0)8291-18 86-79 info@oec-gmbh.de www.oec-gmbh.de